人工智能模仿人类行为——作为其分支,计算机视觉再现了人类解读图像的能力。该技术借鉴了人类视觉系统的复杂性,模仿其处理视觉信息的方式。虽然拍摄图像的谜团在数百年前就被解开了(并随着相机的发明而被封存),但图像解释它一直是一个困难的部分。有了人工智能,这一切成为可能。
在计算机视觉的情况下,眼睛被传感设备和视觉皮层所取代——由机器学习算法驱动的解释设备。通过使用大型图像数据集进行训练,深度学习模型可以解释给定图像的内容。该机制用于制造缺陷和异常检测。
以满足所有质量要求的完美产品的图像样本为样本,深度学习模型形成了自己的逻辑,学习识别不同类型的缺陷。设备捕获的图像将根据其进行评估,如果不匹配,则立即标记缺陷。开发人员可以利用不同的方法,创建生成性异常检测算法,如贝叶斯网络、递归神经网络(RNN)、卷积神经网络(CNN)、GAN或变分自动编码器。
在最常见的情况下,算法将产品分类为有缺陷或无缺陷。模型还可以通过监督学习进行训练,根据缺陷的严重程度、类型或状态对其进行分类。这使我们能够创建更复杂的自动触发反应机制,并收集详细数据。
将机器学习应用于质量检测——行业用例
竞争日益激烈的创业环境使制造商不断提高产品质量,基于人工智能的自动化工具可以在这一过程中提供宝贵的支持。有了计算机视觉,他们可以更有效地评估产品质量,而无需雇佣额外的人工。
跨行业的缺陷和异常检测应用案例
制药和生命科学中的视觉检测
细胞系的交叉污染是制药和科学实验室每天面临的最常见风险之一。有时,只要一滴管被意外重复使用,污染就会发生。它们可能会对实验室研究产生负面影响,甚至使药品无法使用,这些结果可能高昂代价。
保持质量标准和培训,制药公司可以降低交叉污染的可能性,但它仍然可以发生——图像处理和深度学习可以帮助在早期识别交叉污染。深层神经网络可以检测细胞的微小形态变化,保护制药公司和实验室的结果不被掺假。例如,来自ATM(翻译医学年鉴)的案例研究证明,神经网络(特别是BCNN)在识别细胞系方面可以达到接近100%的准确率。
对于生物技术公司来说,检测检查用于监测细胞培养、识别交叉污染和跟踪形态学变化。深度学习模型可以在人眼(通过显微镜)尚不可见的阶段检测到这些变化,从而有可能及时采取预防措施,避免代价高昂的失败风险。专门的ML软件分析细胞图像,并提供具有有价值的报告,以帮助客户提高研究效率。
视觉检查也有助于制药公司控制包装。制药公司必须遵守有关其药品容器的严格规范和规定。大多数产品要求密封,并使用特定材料。同时,包装上的任何缺陷都会影响药物的效率和保质期。有了计算机视觉,这样的问题可以在早期发现。
半导体制造过程中的缺陷检测
视觉检测可以帮助各个行业的公司关注产品本身的质量,同时也关注产品的状态。它们可以使用图像处理来监控半导体制造过程,例如清洁、薄膜沉积、蚀刻、曝光、注入、抗蚀剂涂层、杂质注入或热处理。该模型可以检测晶圆层面的异常情况,并将诸如预放置检查等过程自动化。
规则是一样的——基于深度学习算法的视觉检测系统在每个半导体工艺完成后,都会通过优质产品的图像进行训练,并学会识别缺陷。在这种情况下,由于缺陷可能很难检测到,良好的图像处理设备是至关重要。